Biocentrism - A Theory
Posted: Sun Mar 31, 2019 11:46 pm
In another thread, SPG noted he had read multiple books on the subject of biocentrism. That clicked in where his views were originating and seems like a better topic to engage with than the bits and pieces of it's application to other topics that can derail threads away from their underlying idea into how someone coming from the perspective of embracing biocentrism might understand that topic.
There's an article from a decade ago in The American Scholar that was written by a major proponent of the idea that has the virtue of being short enough to capture the ideas in a quick read through for those who are curious and haven't heard of this idea. It's also available for free at this link:
https://theamericanscholar.org/a-new-th ... KFNlHdFxaQ
Here are a few salient bits from the article for those unable or unwilling to follow it:
Living in an age dominated by science, we have come more and more to believe in an objective, empirical reality and in the goal of reaching a complete understanding of that reality. Part of the thrill that came with the announcement that the human genome had been mapped or with the idea that we are close to understanding the big bang rests in our desire for completeness.
But we’re fooling ourselves.
Most of these comprehensive theories are no more than stories that fail to take into account one crucial factor: we are creating them. It is the biological creature that makes observations, names what it observes, and creates stories. Science has not succeeded in confronting the element of existence that is at once most familiar and most mysterious—conscious experience. As Emerson wrote in “Experience,” an essay that confronted the facile positivism of his age: “We have learned that we do not see directly, but mediately, and that we have no means of correcting these colored and distorting lenses which we are or of computing the amount of their errors. Perhaps these subjectlenses have a creative power; perhaps there are no objects.”
...
We have failed to protect science against speculative extensions of nature, continuing to assign physical and mathematical properties to hypothetical entities beyond what is observable in nature. The ether of the 19th century, the “spacetime” of Einstein, and the string theory of recent decades, which posits new dimensions showing up in different realms, and not only in strings but in bubbles shimmering down the byways of the universe—all these are examples of this speculation. Indeed, unseen dimensions (up to a hundred in some theories) are now envisioned everywhere, some curled up like soda straws at every point in space.
Today’s preoccupation with physical theories of everything takes a wrong turn from the purpose of science—to question all things relentlessly. Modern physics has become like Swift’s kingdom of Laputa, flying absurdly on an island above the earth and indifferent to what is beneath. When science tries to resolve its conflicts by adding and subtracting dimensions to the universe like houses on a Monopoly board, we need to look at our dogmas and recognize that the cracks in the system are just the points that let the light shine more directly on the mystery of life.
...
Modern science cannot explain why the laws of physics are exactly balanced for animal life to exist. For example, if the big bang had been one-part-in-a billion more powerful, it would have rushed out too fast for the galaxies to form and for life to begin. If the strong nuclear force were decreased by two percent, atomic nuclei wouldn’t hold together. Hydrogen would be the only atom in the universe. If the gravitational force were decreased, stars (including the sun) would not ignite. These are just three of more than 200 physical parameters within the solar system and universe so exact that they cannot be random. Indeed, the lack of a scientific explanation has allowed these facts to be hijacked as a defense of intelligent design.
Without perception, there is in effect no reality. Nothing has existence unless you, I, or some living creature perceives it, and how it is perceived further influences that reality. Even time itself is not exempted from biocentrism. Our sense of the forward motion of time is really the result of an infinite number of decisions that only seem to be a smooth continuous path. At each moment we are at the edge of a paradox known as The Arrow, first described 2,500 years ago by the philosopher Zeno of Elea. Starting logically with the premise that nothing can be in two places at once, he reasoned that an arrow is only in one place during any given instance of its flight. But if it is in only one place, it must be at rest. The arrow must then be at rest at every moment of its flight. Logically, motion is impossible. But is motion impossible? Or rather, is this analogy proof that the forward motion of time is not a feature of the external world but a projection of something within us? Time is not an absolute reality but an aspect of our consciousness.
This paradox lies at the heart of one of the great revolutions of 20th-century physics, a revolution that has yet to take hold of our understanding of the world and of the decisive role that consciousness plays in determining the nature of reality. The uncertainty principle in quantum physics is more profound than its name suggests. It means that we make choices at every moment in what we can determine about the world. We cannot know with complete accuracy a quantum particle’s motion and its position at the same time—we have to choose one or the other. Thus the consciousness of the observer is decisive in determining what a particle does at any given moment.
Einstein was frustrated by the threat of quantum uncertainty to the hypothesis he called spacetime, and spacetime turns out to be incompatible with the world discovered by quantum physics. When Einstein showed that there is no universal now, it followed that observers could slice up reality into past, present, and, future, in different ways, all with equal reality. But what, exactly, is being sliced up?
Space and time are not stuff that can be brought back to the laboratory in a marmalade jar for analysis. In fact, space and time fall into the province of biology—of animal sense perception—not of physics. They are properties of the mind, of the language by which we human beings and animals represent things to ourselves. Physicists venture beyond the scope of their science—beyond the limits of material phenomena and law—when they try to assign physical, mathematical, or other qualities to space and time.
Return to the revelation that we are thinking animals and that the material world is the elusive substratum of our conscious activity continually defining and redefining the real. We must become skeptical of the hard reality of our most cherished conceptions of space and time, and of the very notion of an external reality, in order to recognize that it is the activity of consciousness itself, born of our biological selves, which in some sense creates the world.
Despite such things as the development of superconducting supercolliders containing enough niobium-titanium wire to circle the earth 16 times, we understand the universe no better than the first humans with sufficient consciousness to think. Where did it all come from? Why does the universe exist? Why are we here? In one age, we believe that the world is a great ball resting on the back of a turtle; in the next, that a fairy universe appeared out of nowhere and is expanding into nothingness. In one age, angels push and pummel the planets about; in another age, everything is a meaningless accident. We exchange a world-bearing turtle for a big bang.
...
It’s important here to address a fundamental question. We have clocks that can measure time. If we can measure time, doesn’t that prove it exists? Einstein sidestepped the question by simply defining time as “what we measure with a clock.” The emphasis for physicists is on the measuring. However, the emphasis should be on the we, the observers. Measuring time doesn’t prove its physical existence. Clocks are rhythmic things. Humans use the rhythms of some events (like the ticking of clocks) to time other events (like the rotation of the earth). This is not time, but rather, a comparison of events. Specifically, over the ages, humans have observed rhythmic events in nature: the periodicities of the moon, the sun, the flooding of the Nile. We then created other rhythmic things to measure nature’s rhythms: a pendulum, a mechanical spring, an electronic device. We called these manmade rhythmic devices “clocks.” We use the rhythms of specific events to time other specific events. But these are just events, not to be confused with time.
...
The experiments of Heisenberg and Bell call us back to experience itself, the immediacy of the infinite here and now, and shake our unexamined trust in objective reality. But another support for biocentrism is the famous two hole experiment, which demands that we go one step further: Zeno’s arrow doesn’t exist, much less fly, without an observer. The two-hole experiment goes straight to the core of quantum physics. Scientists have discovered that if they “watch” a subatomic particle pass through holes on a barrier, it behaves like a particle: like a tiny bullet, it passes through one or the other holes. But if the scientists do not observe the particle, then it exhibits the behavior of a wave. The two-hole experiment has many versions, but in short: If observed, particles behave like objects; if unobserved, they behave like waves and can go through more than one hole at the same time.
Dubbed quantum weirdness, this wave-particle duality has befuddled scientists for decades. Some of the greatest physicists have described it as impossible to intuit and impossible to formulate into words, and as invalidating common sense and ordinary perception. Science has essentially conceded that quantum physics is incomprehensible outside of complex mathematics. How can quantum physics be so impervious to metaphor, visualization, and language?
If we accept a life-created reality at face value, it becomes simple to understand. The key question is waves of what? Back in 1926, the Nobel laureate physicist Max Born demonstrated that quantum waves are waves of probability, not waves of material as the Austrian physicist Erwin Schrödinger had theorized. They are statistical predictions. Thus a wave of probability is nothing but a likely outcome. In fact, outside of that idea, the wave is not there. It’s nothing. As John Wheeler, the eminent theoretical physicist, once said, “No phenomenon is a real phenomenon until it is an observed phenomenon.”
There's an article from a decade ago in The American Scholar that was written by a major proponent of the idea that has the virtue of being short enough to capture the ideas in a quick read through for those who are curious and haven't heard of this idea. It's also available for free at this link:
https://theamericanscholar.org/a-new-th ... KFNlHdFxaQ
Here are a few salient bits from the article for those unable or unwilling to follow it:
Living in an age dominated by science, we have come more and more to believe in an objective, empirical reality and in the goal of reaching a complete understanding of that reality. Part of the thrill that came with the announcement that the human genome had been mapped or with the idea that we are close to understanding the big bang rests in our desire for completeness.
But we’re fooling ourselves.
Most of these comprehensive theories are no more than stories that fail to take into account one crucial factor: we are creating them. It is the biological creature that makes observations, names what it observes, and creates stories. Science has not succeeded in confronting the element of existence that is at once most familiar and most mysterious—conscious experience. As Emerson wrote in “Experience,” an essay that confronted the facile positivism of his age: “We have learned that we do not see directly, but mediately, and that we have no means of correcting these colored and distorting lenses which we are or of computing the amount of their errors. Perhaps these subjectlenses have a creative power; perhaps there are no objects.”
...
We have failed to protect science against speculative extensions of nature, continuing to assign physical and mathematical properties to hypothetical entities beyond what is observable in nature. The ether of the 19th century, the “spacetime” of Einstein, and the string theory of recent decades, which posits new dimensions showing up in different realms, and not only in strings but in bubbles shimmering down the byways of the universe—all these are examples of this speculation. Indeed, unseen dimensions (up to a hundred in some theories) are now envisioned everywhere, some curled up like soda straws at every point in space.
Today’s preoccupation with physical theories of everything takes a wrong turn from the purpose of science—to question all things relentlessly. Modern physics has become like Swift’s kingdom of Laputa, flying absurdly on an island above the earth and indifferent to what is beneath. When science tries to resolve its conflicts by adding and subtracting dimensions to the universe like houses on a Monopoly board, we need to look at our dogmas and recognize that the cracks in the system are just the points that let the light shine more directly on the mystery of life.
...
Modern science cannot explain why the laws of physics are exactly balanced for animal life to exist. For example, if the big bang had been one-part-in-a billion more powerful, it would have rushed out too fast for the galaxies to form and for life to begin. If the strong nuclear force were decreased by two percent, atomic nuclei wouldn’t hold together. Hydrogen would be the only atom in the universe. If the gravitational force were decreased, stars (including the sun) would not ignite. These are just three of more than 200 physical parameters within the solar system and universe so exact that they cannot be random. Indeed, the lack of a scientific explanation has allowed these facts to be hijacked as a defense of intelligent design.
Without perception, there is in effect no reality. Nothing has existence unless you, I, or some living creature perceives it, and how it is perceived further influences that reality. Even time itself is not exempted from biocentrism. Our sense of the forward motion of time is really the result of an infinite number of decisions that only seem to be a smooth continuous path. At each moment we are at the edge of a paradox known as The Arrow, first described 2,500 years ago by the philosopher Zeno of Elea. Starting logically with the premise that nothing can be in two places at once, he reasoned that an arrow is only in one place during any given instance of its flight. But if it is in only one place, it must be at rest. The arrow must then be at rest at every moment of its flight. Logically, motion is impossible. But is motion impossible? Or rather, is this analogy proof that the forward motion of time is not a feature of the external world but a projection of something within us? Time is not an absolute reality but an aspect of our consciousness.
This paradox lies at the heart of one of the great revolutions of 20th-century physics, a revolution that has yet to take hold of our understanding of the world and of the decisive role that consciousness plays in determining the nature of reality. The uncertainty principle in quantum physics is more profound than its name suggests. It means that we make choices at every moment in what we can determine about the world. We cannot know with complete accuracy a quantum particle’s motion and its position at the same time—we have to choose one or the other. Thus the consciousness of the observer is decisive in determining what a particle does at any given moment.
Einstein was frustrated by the threat of quantum uncertainty to the hypothesis he called spacetime, and spacetime turns out to be incompatible with the world discovered by quantum physics. When Einstein showed that there is no universal now, it followed that observers could slice up reality into past, present, and, future, in different ways, all with equal reality. But what, exactly, is being sliced up?
Space and time are not stuff that can be brought back to the laboratory in a marmalade jar for analysis. In fact, space and time fall into the province of biology—of animal sense perception—not of physics. They are properties of the mind, of the language by which we human beings and animals represent things to ourselves. Physicists venture beyond the scope of their science—beyond the limits of material phenomena and law—when they try to assign physical, mathematical, or other qualities to space and time.
Return to the revelation that we are thinking animals and that the material world is the elusive substratum of our conscious activity continually defining and redefining the real. We must become skeptical of the hard reality of our most cherished conceptions of space and time, and of the very notion of an external reality, in order to recognize that it is the activity of consciousness itself, born of our biological selves, which in some sense creates the world.
Despite such things as the development of superconducting supercolliders containing enough niobium-titanium wire to circle the earth 16 times, we understand the universe no better than the first humans with sufficient consciousness to think. Where did it all come from? Why does the universe exist? Why are we here? In one age, we believe that the world is a great ball resting on the back of a turtle; in the next, that a fairy universe appeared out of nowhere and is expanding into nothingness. In one age, angels push and pummel the planets about; in another age, everything is a meaningless accident. We exchange a world-bearing turtle for a big bang.
...
It’s important here to address a fundamental question. We have clocks that can measure time. If we can measure time, doesn’t that prove it exists? Einstein sidestepped the question by simply defining time as “what we measure with a clock.” The emphasis for physicists is on the measuring. However, the emphasis should be on the we, the observers. Measuring time doesn’t prove its physical existence. Clocks are rhythmic things. Humans use the rhythms of some events (like the ticking of clocks) to time other events (like the rotation of the earth). This is not time, but rather, a comparison of events. Specifically, over the ages, humans have observed rhythmic events in nature: the periodicities of the moon, the sun, the flooding of the Nile. We then created other rhythmic things to measure nature’s rhythms: a pendulum, a mechanical spring, an electronic device. We called these manmade rhythmic devices “clocks.” We use the rhythms of specific events to time other specific events. But these are just events, not to be confused with time.
...
The experiments of Heisenberg and Bell call us back to experience itself, the immediacy of the infinite here and now, and shake our unexamined trust in objective reality. But another support for biocentrism is the famous two hole experiment, which demands that we go one step further: Zeno’s arrow doesn’t exist, much less fly, without an observer. The two-hole experiment goes straight to the core of quantum physics. Scientists have discovered that if they “watch” a subatomic particle pass through holes on a barrier, it behaves like a particle: like a tiny bullet, it passes through one or the other holes. But if the scientists do not observe the particle, then it exhibits the behavior of a wave. The two-hole experiment has many versions, but in short: If observed, particles behave like objects; if unobserved, they behave like waves and can go through more than one hole at the same time.
Dubbed quantum weirdness, this wave-particle duality has befuddled scientists for decades. Some of the greatest physicists have described it as impossible to intuit and impossible to formulate into words, and as invalidating common sense and ordinary perception. Science has essentially conceded that quantum physics is incomprehensible outside of complex mathematics. How can quantum physics be so impervious to metaphor, visualization, and language?
If we accept a life-created reality at face value, it becomes simple to understand. The key question is waves of what? Back in 1926, the Nobel laureate physicist Max Born demonstrated that quantum waves are waves of probability, not waves of material as the Austrian physicist Erwin Schrödinger had theorized. They are statistical predictions. Thus a wave of probability is nothing but a likely outcome. In fact, outside of that idea, the wave is not there. It’s nothing. As John Wheeler, the eminent theoretical physicist, once said, “No phenomenon is a real phenomenon until it is an observed phenomenon.”